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The propagation of TE-polarized electromagnetic waves along a Kerr-type nonlinear dielectric, nonabsorb-
ing, nonmagnetic, and isotropicscirculard cylindrical waveguide is investigated. For axiallysazimuthald sym-
metric solutions the problem is reduced to a cubic-nonlinear integral equation that is solved by iteration leading
to a sequence uniformly convergent to the solution of the integral equation. The dispersion relations associated
to the exact and iterate solutions, respectively, are derived and solved, subject to certain constraints. The roots
of the exact dispersion relation are approximated by the roots of the dispersion relations generated by the
iterate solutions. All statements of existence and convergence are based on results of a previous paper. Nu-
merical resultssconcerning solutions of dispersion relations, field patterns, dependence of the propagation
constant and of the cutoff radius on the nonlinearity parameter, power flowd are included.
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I. INTRODUCTION

The propagation of electromagnetic waves in linear media
along a circular cylindrical dielectric waveguide is a relevant
topic of classical electrodynamicsf1,2g. Cylindrical wave-
guide structures consisting of nonlinear media have been in-
vestigated by several authors. Chiaoet al. f3g considered
self-trapping of optical beams and calculated the radial pro-
file of the electric field. Eleonskiiet al. f4g presented a theory
of cylindrical self-focusing waveguides primarily based on
the qualitative analysis of phase trajectories corresponding to
solutions of Maxwell’s equations including numerical calcu-
lations of the fundamental and lowest nonfundamental TE
mode. Based on a variational technique Chenf5g derived
analytical solutions for the fundamental mode of nonlinear
fibers with arbitrary nonlinearity. Akhmedievet al. f6g stud-
ied the modulation instability of the fundamental mode of a
Kerr-law nonlinear cylindric waveguide and presented ana-
lytical and numerical results by using certain integral rela-
tions. Sammut and Paskf7g used a variational formulation of
the wave equation for waveguides with arbitrary nonlinearity
of the optical fiber and presented analytical approximations
for the field profiles. Recently, Sjobergf8g analyzed the
propagation of electromagnetic waves in a nonlinear cylin-
drical waveguide by means of a perturbation approach with
the strength of the nonlinearity as the perturbation parameter.

In the case of three-layer planar waveguide with Kerr
nonlinearity the fields and the dispersion relation can be ex-
pressed exactly in terms of elliptic functionsf9g. For the
corresponding Kerr-law nonlinear dielectric cylindrical
waveguide some mathematical results have been presented in
a previous paperf10g.

The present paper draws some physical conclusions from
Ref. f10g. Maxwell’s equations are reduced to a nonlinear
integral equation with a kernel in the form of a Green’s func-
tion of the Bessel equation. Based on the existence of a
unique and continuous solution of the integral equation and
the uniform convergence of the sequence of iterate solutions
f11g, an approximate analytical solution is presented and
compared with the exact numerical solution.

Propagating TE waves are associated with the existence
of propagation constants as solutions of the dispersion rela-
tion. Due to the existence of solutions of the dispersion re-
lations generated by the exact and the iterate solutions of the
integral equation, respectivelyf12g, an approximate disper-
sion relation is presented and evaluated to yield expressions
for field patterns, dispersion curves, cutoff radii, and power
flow.

II. FORMULATION OF THE PROBLEM

We consider the wave propagation in a cylindrical lossless
dielectric waveguide with the circular cross sectionW
=hsx,yd :r=Îx2+y2,Rj. The waveguide is assumed to be
isotropic and homogeneous inz direction sthe waveguide
axisd. The sreald electric fieldsin cylindrical coordinatesd

EW sr,w,z,td = EW +sr,w,zdcosvt + EW −sr,w,zdsinvt s2.1d

satisfies

rotrotEWsr,w,zd = v2«mEWsr,w,zd, s2.2d

where

EWsr,w,zd = EW +sr,w,zd + iEW −sr,w,zd. s2.3d

The permittivity« of the internal medium is assumed to have
a Kerr-nonlinear dependence on the electric field intensity
according to

« =H«2 + auEW u2, 0 ø r ø R,

«1 = const, r . R,
J s2.4d

where«1, «2, anda are real constantsswith respect tor, w, z,
td. We further assume all media to be nonmagnetic withm
=m0 being the free-space permeability.

The fieldEW propagates along the waveguidez axis as
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EWsr,w,zd = VW sr,wdeigz, s2.5d

whereg is the propagation constant.
For a linear medium, the method to obtain solutions of

Maxwell’s equations in a cylindrical structure is well docu-
mented in the literaturef1,2g. In particular, due to the bound-
ary conditions, the types of fields do not, in general, separate
into TE and TM modes, except in special circumstances such
as azimuthal symmetry in circular cylinders, to be investi-

gated below. Assuming a separable solutionVW E,Hsr ,wd, har-
monic functions sinnw, cosnw snù0 integerd for the azi-
muthal dependence and, for the radial dependence, cylinder
functions that fulfill a second order Bessel differential equa-
tion are obtained.

In analogy to the ansatz for planar waveguidesf9g ansatz
s2.5d models “stationary” solutions with az-independentsin
a lossless mediumd amplitudeV. For lossy media or if there
are anyssmalld perturbations thez dependence ofV must be
taken into account, leadingsby using the slowly varying en-
velope approximationd to a nonlinear Schrödinger equation
for V; thus one can perform a stability analysis of the solu-
tions found. As will be seen below these solutions are similar
to those of the linear case. We do not consider the problem
whether the solutions found are stablesand thus solitonsd.

In the problem under study we provedf10g the existence
of TE waves. Omitting the factors sinnw and cosnw we

consider the polarization caseEW =h0;Ew ;0j, HW =hHr ;0 ;Hzj
in the following. Then Maxwell’s equations imply thatHr

andHz do not depend onw and we obtainf10g

Hr = −
k0

ivm

]Ew

]z
, Hz =

k0

ivm

1

r

]

]r
srEwd, s2.6d

]

]r
S1

r

]

]r
srEwdD +

]2Ew

]z2 + v2«mEw = 0. s2.7d

According to Eq.s2.5d we assumeEwsr ,zd=E0usr ,g2deigz

swith E0 a real constantd so that Eq.s2.7d can be written as

S1

r
srud8D8

+ sv2«m − g2du = 0, s2.8d

where the prime denotes the differentiation with respect tor.
Since «=«1 outside the waveguide, we obtain the Bessel
equation

u9 +
1

r
u8 −

1

r2u − k1
2u = 0, r . R, s2.9d

wherek1
2=g2−v2«1m0.

Inside the waveguide, where«=«2+auEW u2, we obtain a
cubic-nonlinear second-order differential equation

u9 +
1

r
u8 −

1

r2u + k2
2u + au3 = 0, 0, r , R, s2.10d

wherea=v2m0aE0
2=k0

2aE0
2/«0, k0

2=v2«0m0, and k2
2=v2«2m0

−g2. The continuity ofEw andHz at the interfacer=R leads
to the conditions

usR+ 0d = usR− 0d, u8sR− 0d = u8sR+ 0d. s2.11d

The problem issid to find nonvanishing functionsusr ,g2d
bounded atr=0 and continuously differentiable on the semi-
infinite interval r.0 and sii d to find triples hR,g ,aj such
thatusr ,g2d satisfies Eqs.s2.9d ands2.10d, and the boundary
conditionss2.11d.

III. SOLUTIONS AND DISPERSION RELATION

In order to fulfill the radiation condition at infinity, we
choose the solution of Eq.s2.9d in the form

u = C1K1sk1rd, r . R, s3.1d

where K1 is the Macdonald functionsHankel function for
pure imaginary argumentsd. Normalizing the field according
to EwsR,0d;E0, we obtain

u =
K1sk1rd
K1sk1Rd

, r . R. s3.2d

The radiation condition is fulfilled becauseK1skrd→0 expo-
nentially asr→`.

We turn to the solution of Eq.s2.10d and write it in the
form

Lu + aru3 = 0, L = r
d2

dr2 +
d

dr
+ Sk2

2r −
1

r
D . s3.3d

Using standard methodsf13g, Green’s functionG for the
mixed-type boundary value problem

LG = − dsr − sd, uGur=0 = uG8ur=R = 0 s0 , s, Rd
s3.4d

is given by sJ1 and N1 denote the Bessel function and the
Neumann function of first kind, respectivelyd

Gsr,sd =5
p

2
FJ1sk2rdJ1sk2sd

J18sk2Rd
N18sk2Rd − J1sk2rdN1sk2sdG , r , sø R,

p

2
FJ1sk2rdJ1sk2sd

J18sk2Rd
N18sk2Rd − J1sk2sdN1sk2rdG , s, r ø R.6 s3.5d
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Applying the second Green’s formula

E
0

R

svLu − uLvddr =E
0

R

fvsru8d8 − usrv8d8gdr

= Rfu8sRdvsRd − v8sRdusRdg s3.6d

and settingv;G, we obtain, using Eq.s3.4d,

E
0

R

sGLu− uLGddr = Rfu8sR− 0dGsR,sd − G8sR,sdusR− 0dg

= Ru8sR− 0dGsR,sd. s3.7d

The left-hand side of Eq.s3.7d can be expressed by means of
Eq. s3.3d. Hence

E
0

R

sGLu− uLGddr = − aE
0

R

Gru3dr + uss,g2d, s3.8d

leading to an integral representation of the solution to Eq.
s2.10d

uss,g2d = aE
0

R

Gsr,r0dru3srddr + Ru8sR+ 0dGsR,r0d,

0 ø r0 ø R, s3.9d

where the conditionu8sR−0d=u8sR+0d has been used.
By means of well-known relations between Bessel func-

tions f14g the Green’s functionGsR,r0d in Eq. s3.9d can be
expressed byGsR,r0d=s1/k2RdfJ1sk2r0d /J18sk2Rdg. Thus the
solution of Eq.s2.10d satisfies the nonlinear integral equation

uss,g2d = aE
0

R

Gsr,sdru3srddr + fss,g2d, 0 ø sø R,

s3.10d

with, taking advantage of the continuity conditions2.11d,

fss,g2d =
k1K18sk1RdJ1sk2sd
k2K1sk1RdJ18sk2Rd

. s3.11d

The unique solutionuss,g2d of Eq. s3.10d existsf15g if

uau , A2, s3.12d

where

AsR,g2d =
2

3Î3

1

max
sPf0,Rg

ufssduÎ max
sPf0,Rg

e0
RdrurGsr,sdu

s3.13d

fin the notation ofAsR,g2d the implicit dependence ofg2 on
a according to Eq.s3.17d sbelowd has been suppressedg.

The functionuss,g2d is continuous with respect tos and
g2 f16g. It can be approximated by means of the iteration
procedure

un+1ss,g2d = aE
0

R

dr rGsr,sdun
3sr,g2d + fss,g2d, n = 0,1, . . .

s3.14d

in the sense that the iteration sequences3.14d converges uni-
formly to the exact solutionuss,g2d of Eq. s3.10d f17g;
namely, max0øsøRuun+1ss,g2d−uss,g2du→0, n→`.

Consistent with the normalization according to Eq.s3.2d it
is useful to start with

u0ss,g2d =
J1sk2sd
J1sk2Rd

. s3.15d

Applying the continuity conditionusR−0d=usR+0d to
Eq. s3.10d we obtainthe dispersion relationassociated to the
exact solutionuss,g2d

fsR,g2d + aE
0

R

dr rGsr,Rdu3sr,g2d = 1, s3.16d

that can be rewritten as

gsR,g2d = aFsR,g2;u3d, s3.17d

with

gsR,g2d = k2RK1sk1RdJ18sk2Rd − k1RK18sk1RdJ1sk2Rd

= k2RK1sk1RdJ0sk2Rd + k1RK0sk1RdJ1sk2Rd,

s3.18d

FsR,g2;u3d = K1sk1RdE
0

R

dr rJ1sk2rdu3sr,g2d.

s3.19d

Subject to certain conditions, tripleshR,g2,aj exist that sat-
isfy the exact nonlinear dispersion relations3.17d ssee Ref.
f10g, Sec. Vd. Thus the problem stated in Sec. II has a non-
trivial solution. We note that Eq.s3.17d is identical with the
linear dispersion relationgsR,g2d=0 f18g if a=0. In this
case,fss,g2d given by Eq.s3.11d is equal tou0ss,g2d accord-
ing to Eq.s3.15d.

It seems useful to compare the foregoing approach with
the “standard” approachsseef19gd. According to Ref.f19g,
Eq. s2.3.14d, the “standard” approach starts with a separation
ansatzswith a z-dependent amplituded leading to a system of
two equationsfcf. Eqs. s2.3.15d and s2.3.16d in Ref. f19gg
solved using the first-order perturbation theory where the
nonlinear dielectric function is replaced by a constant linear
one. The result is a certain propagation constantb and the
corresponding modal field distributionFsrd. The nonlinearity
is taken into account by adding a correction termDb fdeter-
mined by the unperturbed fieldFsrdg, leaving Fsrd un-

changed. The dispersion relation is given byb̄=b+Db
within this approachfcf. Eq. s2.3.19d in Ref. f19gg. Obvi-
ously the ansatz of the “standard” approach is more general
than ansatzs2.5d. We have considered a particular polariza-
tion case, disregarding stability, and restricted analysis to
lossless media with the core homogeneous in thez direction.
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On the other hand, we think that our approach is more
rigoroussmathematicallyd. The field obeys the nonlinear in-
tegral equations3.10d; the exact solution to this equation
exists and can be approximated by iteration and solving the
sexactd dispersion relations3.17d whose exact solution also
exists and can be approximated for nonlinearitiesa subject
to the conditions of the theorem presented in the Appendixes.
It would be intriguing to compare practical results of both
methods.

IV. APPROXIMATIONS

It is obvious and useful to consider the sequence of dis-
persion relations generated by the iteration sequences3.14d
sfor a, R prescribedd

g„R,sgsndd2
… = aF„R,sgsndd2;un

3
…. s4.1d

Hereun is determined from Eq.s3.14d with g=gsn−1d andgsnd

from Eq. s3.17d in which u is replaced byun.
We have shownf20g that solutionssgsndd2 to Eq. s4.1d

exist and that the sequencesgsndd2 approximates the solutions
g2 of the exact dispersion relations3.17d fusgsndd2−g2u→0 as
n→`g. In this meaning, the sequence of dispersion relations
defined by Eq.s4.1d approximates the exact relations3.17d.

The first approximation is obtained by insertingu0ss,g2d
into Eq. s3.17d. Hence it follows

HsR,g,ad ; gsR,g2d − a
K1sk1Rd
J1

3sk2Rd E0

R

dr rJ1
4sk2rd = 0.

s4.2d

The solutionssgs0dd2 of Eq. s4.2d and the zeroth approxima-
tion u0ss,sgs0dd2d given by Eq.s3.15d must be inserted into
Eq. s3.14d leading to the first approximationu1(s,sgs0dd2) of
the field functionuss,g2d

u1„s,sgs0dd2
… =

k1K18sk1RdJ1sk2sd
k2K1sk1RdJ18sk2Rd

+ a
p

2HN18sk2Rd
J18sk2Rd

J1sk2sd

3E
0

R

dr rJ1sk2rdu0
3
„r,sgs0dd2

… − N1sk2sd

3E
0

s

dr rJ1sk2rdu0
3
„r,sgs0dd2

… − J1sk2sd

3E
s

R

dr rN1sk2rdu0
3
„r,sgs0dd2

…J , s4.3d

wherek1=Îsgs0dd2−«1 andk2=Î«2−sgs0dd2.
Since«2− j1i

2 /R2, sgs0dd2,«2− j0i
2 /R2 holdsscf. Appendix

Ad J18sk2Rd cannot be zero because the zeros ofJ18 are outside
the interval fg1i

2 ,g2i
2 g. The same statement is valid for the

solutions g2 of Eq. s3.17d, so that Green’s functions3.5d
exists andu1ssd, sP f0,Rg, is nonsingular.

If a=0, u1 is equal to f and this is equal tou0ss,g2d
becausesgs0dd2=g2 is a solution of the linear dispersion re-
lation gsR,g2d=0.

Summing up,

ũssd = Hu1„s,sgs0dd2
…, 0 ø sø R,

K1sk1sdK1
−1sk1Rd, s. R,

J
where u1(s,sgs0dd2), given by Eq.s4.3d, is an approximate
solution of the problem stated in Sec. II ifsgs0dd2 is a solution
of the approximate dispersion relations4.2d.

V. APPLICATIONS

We introduce the dimensionless variables and parameters
r̃=k0r, z̃=k0z, R̃=k0R, «̃=« /«0, k̃1=Îg̃2− «̃1, k̃2=Î«̃2− g̃2,
s«̃2.«̃1d, andg̃=g /k0. Thus the nonlinearity parametera in
Eqs. s4.2d and s4.3d is dimensionless and given bya
=aE0

2/«0. In the following we omit the tildes.
To apply the results of the previous section it is useful to

evaluate the quantitiesA given by Eq.s3.13d andA1 andB1
defined in Appendix A. According to Appendix B we obtain
for the first interval g2PL1, L1=f«2− j11

2 /R2,«2− j01
2 /R2g

sthe first moded

Asg2,Rd = U 0.228713sg2 − «2dfJ0sRÎ«2 − g2d − J2sRÎ«2 − g2dgK1sRÎg2 − «1d
Îg2 − «1J1„mins j118 ,RÎ«2 − g2d…fK0sRÎg2 − «1d + K2sRÎg2 − «1dg

U , s5.1d

A1sRd = 0.9814603 U K1„
ÎR2s«2 − «1d − j01

2
…

hRÎR2s«2 − «1d − j01
2 fK0„

ÎR2s«2 − «1d − j01
2
… + K2„

ÎR2s«2 − «1d − j01
2
…gj
U, 2.4ø Rø 5, s5.2d
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B1sa,Rd =

min
m=1,2

ugsg1m
2 du

K1„
Îs«2 − «1dR2 − j11

2
…0.3R21−

F3 cosX1

3
cos−1SÎuau

A1

D −
2p

3
CGifi+

Îuau

A1

2
3
, s5.3d

with

g1m
2 = «2 −

j1m
2

R2 , m= 1,2 s5.4d

and

ifi+ = U k1RuK18sk1RdJ1„mins j118 ,k2Rd…u
k2RuK1sk1RdJ18sk2Rdu

U
g2=g12

2
. s5.5d

We choose«1=1, «2=3.5, anda=7310−4. In this case all
sufficient conditions of theorems 1–4 in Ref.f10g are satis-
fied if 2.58,R,3.10 scf. Fig. 1d. Figure 2 represents the
solutions of the dispersion relations4.2d for g2PL1. An as-
sociated field pattern is depicted in Fig. 3. The agreement of
u1 with the numerical solutionscalculated by means of the
NDSolve routine of Mathematicad is satisfactoryfcf. Fig.
3sbdg. The intensityE0

2u2srg2d can be compared with experi-
mental results.

The solutionu1 sfor a0=7310−4d can be continued ana-
lytically for a.a0 scf. Fig. 4d. If HsR,gs0d ,a0d=0 and ex-
cluding u]H /]gsRdua=a0

=0 we obtain

g = gs0d − *
]H

]a
sRd

]H

]g
sRd*

a=a0

sa − a0d + ¯ . s5.6d

For R=3.25 anda0=7310−4 the solution of the disper-
sion relationH=0 is gs0d=1.597. ForR=3.25 anda=10−1

the solution isg1=1.605. Evaluation of Eq.s5.6d with a
=10−1 leads tog2=1.606. The field patterns for this case are
shown in Fig. 5. The agreement with the associated numeri-
cal solution is satisfactorysthe singularity in the numerical
solutions is due to the NDSolve routine of Mathematicad.
Hence it seems justified to conclude that the solutiong1 of
the dispersion relations4.2d is a satisfactory approximate so-
lution of the exact dispersion relations4.1d though thessuf-
ficientd conditions of the theorems 3 and 4f10g are not sat-
isfied. If we apply the same approach forR=5 and a=
−10−1, we obtain the result shown in Fig. 6.

If a solution of the dispersion relations4.2d exists in the
vicinity of g=Î«1 fR→Rc=Îj11

2 / s«2−«1dg the dependence
of the cutoff radiusRc on the nonlinearity parametera can be
investigated in analogy to the linear case. In the limitg
→Î«1 Eq. s4.2d can be approximated by

kRc
J0skRcd
J1skRcd

= aE
0

Rc

rS J1skrd
J1skRcd

4dr, s5.7d

wherek=Î«2−«1. Figure 7 shows the dependence ofRc on
a.

The power flowP down the guidesin the core and in the
cladding regimed is obtained from an integration of thez
component of the time-averaged Poynting vectorSZ over the
appropriate cross section:

FIG. 1. Check of the sufficient conditions of theoremscf. Ap-
pendix Ad for a=7310−4. If 2.58,R,3.10 holds, thena
,minhA1

2,B1,aj is valid.

FIG. 2. Dependence ofR on g for a=7310−4. Dashed curves:
boundaries ofL1; solid curves: solutions of the dispersion relation
s4.2d subject toa,minhA1

2,B1,aj scf. Fig. 1d.
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P = Pcore+ Pcl, s5.8d

with

Pcore= 2pE
0

R

drrSzsk2rd, s5.9d

Pcl = 2pE
R

`

drrSzsk1rd, s5.10d

Szssd = −
1

2
RehEwssdHr

*ssdj. s5.11d

By using Eqs.s3.2d ands4.3d and asymptotic properties of
K1sxd f14g Eqs.s5.9d and s5.10d can be evaluated to yield

Pcore= 2pgP0E
0

R

drru1
2sk2rd, s5.12d

Pcl = pR2gP0SK0sk1RdK2sk1Rd
K1

2sk1Rd
− 1D , s5.13d

where P0=E0
2k0/2vm0. It is convenient to abbreviateb

=K1
2sk1Rd /K0sk1RdK2sk1Rd. Thus the power flow fractions

can be written as

Pcore

P
=

2be0
Rdssu1

2sk2sd
s1 − bdR2 + 2be0

Rdssu1
2sk2sd

, s5.14d

Pcl

P
=

s1 − bdR2

s1 − bdR2 + 2be0
Rdssu1

2sk2sd
. s5.15d

FIG. 4. Dependence ofg on a according to the dispersion rela-
tion s4.2d for R=3.25 andR=5. Arrows indicate analytic continua-
tion scf. details in the textd. Dashing indicates nonphysical
branches.

FIG. 3. sad Field pattern according to Eqs.s3.2d and s4.3d sparameters:«1=1, «2=3.5, R=3.25,a=7310−4d and numerical solution of
Eqs.s2.9d and s2.10d. sbd Enlarged fragment of the curve in the vicinity of origin.
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Figure 8 shows the fractionPcore/P=1−Pcl /P as a func-
tion of a=aE0

2/«0. Since an analytic continuation according
to Eq. s5.6d for a<−0.06 is possible it seems that a cutoff
limit of a for defocusing material exists, where the power
flow in the core switches to zeroswe could not find associ-
ated experimental results in the literatured. The dispersion
curves related to Fig. 8 are shown in Fig. 9. Making use of
Eqs. s5.12d and s5.13d, the total power flow carried by the
guided wave in first approximation is given by

P =
ap«0

3/2

am0
1/2 gSE

0

R

dssu1
2sk2sd +

R2s1 − bd
2b D . s5.16d

According to the dispersion relations4.2d the propagation
constantg is an implicit function of the radiusR and of the
nonlinearity parametera. Thus, solving Eq.s4.2d for fixed a,
one obtains the propagation constantg as a function of the
radiusR: g=gsR;a=constd. By means of Eq.s5.14d we then
find the corresponding values of the power flowPcore/P and

FIG. 5. sad Field pattern according to Eqs.s3.2d ands4.3d sparameters:«1=1, «2=3.5,R=3.25,a=10−1d and numerical solution of Eqs.
s2.9d and s2.10d. sbd Enlarged fragment of the curve in the vicinity of maximum.

FIG. 6. Field pattern according
to Eqs. s3.2d and s4.3d sparam-
eters: «1=1, «2=3.5, R=5, a=
−10−1d and numerical solution of
Eqs.s2.9d ands2.10d. sbd Enlarged
fragment of the curve in the vicin-
ity of origin.
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its dependence onR. This dependence is shown in Fig. 10.
Finally, we evaluate the total power flow according to

Eqs.s5.16d. Apart from a constantsE0 is assumed to be con-
stantd the dependence ofP on g is given by the integral

I = gE
0

R

dssu2sk2sd +
R2s1 − bd

b
, s5.17d

with b=K1
2sk1Rd /K0sk1RdK2sk1Rd subject to the dispersion

relations4.2d. We choosea=0, ±0.01. The associated depen-
dence ofR on g is shown in Fig. 11.

The total power flowPsgd for selected branches of the
dispersion relationscf. Fig. 11d has been plotted in Fig. 12,
where, in evaluatingI, Eqs.s3.15d ands4.3d have been used
for a=0 anda= ±0.01, respectively. Obviously the neces-
sary condition for stabilityf21g

]P

]g
. 0 s5.18d

is satisfied for the selected branches in Fig. 11.
We would like to make the following comment concern-

ing the computational results: we solved the nonlinear Bessel
equation numerically without approximation using the
NDSolve Mathematica routine. The singularity atr=0 is
generated by this routine and not due toaÞ0.

VI. CONCLUSION

The goal of this article has been to propose an approach to
treat the propagation of electromagneticsTEd waves in a cy-
lindrical Kerr-nonlinear dielectric waveguide based on the
Green’s function method. We have obtained an approximate
analytical solution of the nonlinear Bessel equations2.10d

FIG. 7. Dependence ofRc on a sparameters:«1=1, «2=3.5d.
Dashing indicates nonphysical branch.

FIG. 8. Power flow fraction in the core with respect toa
=aE0

2/«0 sparameters:«1=1, «2=3.5d. Arrows indicate switching of
the power flow and dashing indicates nonphysical branches.

FIG. 9. Dependence ofg on a for R=3 and 2.5sparameters:
«1=1, «2=3.5d. Dashing indicates nonphysical branches.

FIG. 10. Power flowPcore/P with respect toR sparameters:«1

=1, «2=3.5d; s1d a=0.05,s2d a=0.01, ands3d a=0.001.
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and an approximative solution of the dispersion relation
s3.19d. As indicated in Sec. V the approach is applicable to
yield numerical results for field patterns, dispersion curves,
cutoff radii, and power flow.

It seems that the approach can be applied to more general
nonlinearitiesse.g., higher order, saturating, photorefractived.
Azimuthal polarization treated in this paper has experimental
relevancef22g. We do not see how the approach can be used
to investigate more general polarization cases, because, in
place of Eqs.s2.7d and s2.10d, in general we obtain two
coupled nonlinear equations.
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APPENDIX A

In Ref. f10g we proved theorem 3. As a consequence of
the different normalizationfcompare Eqs.s3.2d ands2.21d in
Ref. f10gg we rewrite theorem 3 in the following form.

Theorem. If «1, «2, and a satisfy the conditions«2.«1
.0, and 0, uau,a0, and «2− j1m

2 /R2.«1 sfor a certainm
ù1d, where

a0 = minhA1
2sRd,B1sa,Rdj, sA1d

A1 = min
g2PL1

AsR,g2d, sA2d

B1 =

min
m=1,2

ugsg1m
2 du

0.3R2 max
g2PL1

hK1sk1Rdr−
3sg2dj

, sA3d

r− = − 2Î 1

3iNi
cos1arccosS3Î3

2
ifiÎiNiD

3
+

2p

3
2 ,

sA4d

ifi = max
sPf0,Rg

ufssdu = max
sPf0,Rg

k1K18sk1RdJ1sk2sd
k2K1sk1RdJ18sk2Rd

, sA5d

iNi = max
sPf0,Rg

E
0

R

uarGsr,sdu, sA6d

L1 = F«2 −
j11
2

R2 ,«2 −
j01
2

R2G , sA7d

fj0i and j1i denote thespositived zeros of Bessel functionsJ0,
J1g then at least oneg2PL1 exists so that the problem de-
scribed at the end of Sec. II has a nontrivial solution.

APPENDIX B: DERIVATION OF EQS. (5.1)–(5.3)

With respect to the definitions ofA, A1, andB1 fcf. Eqs.
s3.13d, sA2d, and sA3dg it is useful to estimate the quantity
TG=maxsPf0,Rge0

RurGsr ,sduds first.
Introducing t=k2r, u=k2s, U=k2R and hsu,Ud=J1sud

3fN18sUd /J18sUdg−N1sud we obtain

E
0

R

urGudr =
R

2k2Msu,Ud, sB1d

with Msu,Ud= uhsu,Udue0
udt tuJ1stdu+ uJ1sudueu

Udt tuhst ,Udu.
For simplicity we consider the first intervalL1 fcf. Eq.sA7dg.
Thus, j01øUø j11,0øuø j11 are valid fwhich implies
J1sudù0g. As shown in Fig. 13,Msu,Ud can be estimated
from above according toMsu,UdøMs j01, j01d, so that

max
sPf0,Rg

E
0

R

urGsr,sdudsø
p

2k2
2uhs j01, j01duE

0

j01

dttJ1std.

By usinghsx,xd=2/pxJ18sxd f14g we finally obtain

FIG. 11. Solutionshg ,Rj of the dispersion relations4.2d, in par-
ticular for 1.1øgø1.44 scf. Fig. 12d: s1d a=0, solid curve;s2d a
=−0.01, dashed curve;s3d a=0.01, dotted curve.

FIG. 12. Power flow integralI defined by Eq.s5.17d for particu-
lar solutionshg ,Rj of the dispersion relations4.2d scf. Fig. 11d.
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max
sPf0,Rg

E
0

R

urGsr,sdudsø
e0

j01dttJ1std
j01J18s j01dk2

2 <
2.832

k2
2 . sB2d

Combining Eqs.s3.11d, s3.13d, and sB2d and usingK18=
−1

2sK0+K2d and J18= 1
2sJ0−J2d one obtains Eq.s5.1d, since

maxsPf0,RgJ1sk2sd=J1sminh j118 ,k2Rjd holds fj118 <1.841 de-
notes the first zero ofJ18sxdg.

A plot of Asg2,Rd se.g., for «1=1, «2=3.5, 2.4øRø5,
and g2PL1d shows that the minimum ofA with respect to
g2PL is given by As«2− j01

2 /R2,Rd. Evaluation yields Eq.
s5.2d.

To derive Eq.s5.3d we combine Eqs.sA4d–sA6d to obtain

r− = −
2

Î3uauTG

cos5arccosS3Î3

2
ifiÎuauTGD

3
−

2p

3
6 , sB3d

or, taking into account Eq.s3.13d,

r− = ifidSÎuau
A

D , sB4d

with

dsxd = −
3

x
cosSarccosx

3
−

2p

3
D . sB5d

Functiondsxd is monotonically increasing.K1sk1Rd in Eq.
sA3d is a monotonically decreasing function andifi a mono-
tonically increasing function with respect tog2PL. Thus
B1sa ,Rd defined by Eq.sA3d can be evaluated according to
Eq. s5.3d.
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