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Propagation of TE waves in cylindrical nonlinear dielectric waveguides
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The propagation of TE-polarized electromagnetic waves along a Kerr-type nonlinear dielectric, nonabsorb-
ing, nonmagnetic, and isotropicirculan cylindrical waveguide is investigated. For axialgzimuthal sym-
metric solutions the problem is reduced to a cubic-nonlinear integral equation that is solved by iteration leading
to a sequence uniformly convergent to the solution of the integral equation. The dispersion relations associated
to the exact and iterate solutions, respectively, are derived and solved, subject to certain constraints. The roots
of the exact dispersion relation are approximated by the roots of the dispersion relations generated by the
iterate solutions. All statements of existence and convergence are based on results of a previous paper. Nu-
merical results(concerning solutions of dispersion relations, field patterns, dependence of the propagation
constant and of the cutoff radius on the nonlinearity parameter, powey #imincluded.
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I. INTRODUCTION Propagating TE waves are associated with the existence

The propagation of electromagnetic waves in linear medi@f Propagation constants as solutions of the dispersion rela-
along a circular cylindrical dielectric waveguide is a relevanttion. Due to the existence of solutions of the dispersion re-
topic of classical electrodynamid4,2]. Cylindrical wave- lations generated by the exact and the iterate solutions of the
guide structures consisting of nonlinear media have been irintegral equation, respectivepjl2], an approximate disper-
vestigated by several authors. Chiab al. [3] considered sion relation is presented and evaluated to yield expressions
self-trapping of optical beams and calculated the radial profor field patterns, dispersion curves, cutoff radii, and power
file of the electric field. Eleonskat al.[4] presented a theory flow.
of cylindrical self-focusing waveguides primarily based on
the qualitative analysis of phase trajectories corresponding to
solutions of Maxwell's equations including numerical calcu-
lations of the fundamental and lowest nonfundamental TE e consider the wave propagation in a cylindrical lossless
mode. Based on a variational technique CliBhderived  gielectric waveguide with the circular cross sectioi
a@nalyﬂcgl solu_tlons for the fu_ndamental .mode of nonlmear:{(xyy):p:\;xz+y2<R}. The waveguide is assumed to be
fibers with arbitrary nonlinearity. Akhmediest al. [6] stud-  jsqr0nic and homogeneous in direction (the waveguide
led the modulation instability of the fundamental mode of 4axis). The (rea) electric field(in cylindrical coordinates
Kerr-law nonlinear cylindric waveguide and presented ana-
lytical and numerical results by using certain integral rela- > > > .
t)i/ons. Sammut and Pa$k] used); varigtional formulgtion of Elp.¢.21) =E.(p,p,7)c0s0t + E_(p, 9, Z)siN 0t (2.1)
the wave equation for waveguides with arbitrary nonlinearitygaiisfies
of the optical fiber and presented analytical approximations
for the field profiles. Recently, Sjober] analyzed the
propagation of electromagnetic waves in a nonlinear cylin-
drical waveguide by means of a perturbation approach Wm\]/vhere
the strength of the nonlinearity as the perturbation parameter.

In the case of three-layer planar waveguide with Kerr 3 > >
nonlinearity the fields and ¥he gispersion reI%tion can be ex- &p.¢.2 =Ep,0,2 +iE(p,0,2). 2.3
pressed exactly in terms of elliptic functiofiS]. For the o permittivitye of the internal medium is assumed to have
corresponding Kerr-law nonlinear dielectric cylindrical Kerr-nonli d d the electric field intensit
waveguide some mathematical results have been presentede\n errnoniinéar dependence on ihe electric field intensity
a previous pap€rl0]. according to

The present paper draws some physical conclusions from
Ref. [10]. Maxwell’s equations are reduced to a nonlinear =
integral equation with a kernel in the form of a Green'’s func- g1=const, p>R,
tion of the Bessel equation. Based on the existence of a _
unique and continuous solution of the integral equation andVherezs, £, anda are real constantavith respect to, ¢, z,
the uniform convergence of the sequence of iterate solutiond- We further assume all media to be nonmagnetic with
[11], an approximate analytical solution is presented and o being the free-space permeability.
compared with the exact numerical solution. The field £ propagates along the waveguidexis as

Il. FORMULATION OF THE PROBLEM

rotrotE(p, ¢,2) = weu(p,¢,2), (2.2

e +alf?, 0=p=R, (2.4
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c iy j 1, 1
E(p.¢,2) = Vip,@)€™, (2.5 u'+=-u' - Su-ku=0, p>R, (2.9

. . p
wherey is the propagation constant.

For a linear medium, the method to obtain solutions ofwhereks= "~ w’e 0. .
Maxwell's equations in a cylindrical structure is well docu-  Inside the waveguide, where=¢,+al&|?, we obtain a
mented in the literaturgl,2]. In particular, due to the bound- cubic-nonlinear second-order differential equation
ary conditions, the types of fields do not, in general, separate 1 1
into TE and TM modes, except in special circumstances such u'+-u' -—=u+ kiu +au®=0, 0<p<R, (2.10
as azimuthal symmetry in circular cylinders, to be investi- P

gated below. Assuming a separable solufiti(p,¢), har-  Where a=w’u@E=kKGaEs/ 5o, Ki=wsquo, and k5= w’eapu

monic functions sime, cosng (n=0 integel for the azi- ~ - The continuity of€, and’{, at the interface=R leads
muthal dependence and, for the radial dependence, cylind&® the conditions
functions that fulfill a second order Bessel differential equa- uR+0)=u(R-0), u(R-0=u(R+0). (2.11
tion are obtained. . . i .

In analogy to the ansatz for planar waveguifi@sansatz The problem igi) to find nonvanishing functions(p, )

(2.5 models “stationary” solutions with zindependentin ~ bounded ap=0 and continuously differentiable on the semi-
a lossless mediuyramplitudeV. For lossy media or if there infinite interval p>0 and (ii) to find triples{R, y,a} such
are any(smal) perturbations the dependence df must be  thatu(p,y?) satisfies Eqs(2.9) and(2.10), and the boundary
taken into account, leadindpy using the slowly varying en- conditions(2.11.

velope approximationto a nonlinear Schrodinger equation
for V; thus one can perform a stability analysis of the solu-
tions found. As will be seen below these solutions are similar In order to fulfill the radiation condition at infinity, we
to those of the linear case. We do not consider the problemhoose the solution of E¢2.9) in the form

whether the solutions found are staléad thus solitons _

In the problem under study we provét0] the existence u=Cikilkp), p>R, 3.
of TE waves. Omitting the factors sinp and cosig we  whereK; is the Macdonald functiorfHankel function for
consider the polarization ca§%c{o;5¢;0}, ﬁ:{Hp;O;HZ} pure imaginary argumer_)tsNormaIizing the field according
in the following. Then Maxwell's equations imply that, @ €.(R,0)=Eo, we obtain

IIl. SOLUTIONS AND DISPERSION RELATION

p

andH, do not depend o and we obtair{10] _ Ki(kip) >R (3.2
ko OE, ko 10 Ktk
p= EE H,= @;ﬂ—p(l)&p)’ (2.6) The radiation condition is fuffilled becausg(k,) — 0 expo-

nentially asp— o°.
We turn to the solution of Eq.2.10 and write it in the

a1 >E
—<——(p5¢)> +—F+ w’eul,=0. (2.7 form
dp\pdp i @2 d 1
3_ - B S
According to Eq.(2.5 we assumet,(p,2)=Equ(p, y*)€" Lu+apu”=0, L'pdp2+ dp+(k2p p>- 3.3

(with B, a real constantso that Eq/(2.7) can be written as Using standard methodd 3], Green’s functionG for the

1 , , mixed-type boundary value problem
(;(pU) ) +(w SM—’yz)UZO, (28) LG:—5(p—S), G|p:0: G,|p:R:0 (0<S< R)

where the prime denotes the differentiation with respeegt to (3.4
Since e=¢; outside the waveguide, we obtain the Besselis given by (J; and N; denote the Bessel function and the

equation Neumann function of first kind, respectivéely
|
z[ hllop)uled) o Jl(kzp)Nl(sz)} hos=R
cnas) 2
E[WN“'@ - Jl(kzs)N1(k2P)} . s<p=R
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Applying the second Green’s formula

R R
f (ULU‘ULU)dP:f [v(pu")" = u(pv’)'1dp
0 0

=RU'(Rw(R) -v'(RU(R)] (3.6)
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R
Unea(8, ) = a f dp pG(p,IUl(p, ) + (59D, N=0,1,...
0

(3.149

in the sense that the iteration sequef@é&4) converges uni-

formly to the exact solutioru(s,?) of Eq. (3.10 [17];
namely, Mmag—<g|Uns1(S, ¥°) —U(s, $?)| — 0, n— .
Consistent with the normalization according to E}2) it
is useful to start with
J1(K,S)

W($7)= 3 (R

Applying the continuity conditionu(R-0)=u(R+0) to
Eq. (3.10 we obtainthe dispersion relatiomssociated to the
exact solutioru(s, y%)

and settingy =G, we obtain, using Eq(3.4),

R
J (GLU-uLG)dp=RU'(R-0)G(R,s) - G'(R,s)u(R-0)]
0

(3.19

=RU(R-0)G(R,s). (3.7

The left-hand side of Eq3.7) can be expressed by means of
Eq. (3.3). Hence

R R
f(GLu—uLG)dp:—af Gpuidp +u(s,»?), (3.9
0 0

R
f(R,yZ)+af dp pG(p,R*(p,») =1, (3.16
leading to an integral representation of the solution to Edihat can be rewritten as

(2.10
d(R, %) = aF(R, 1), (3.17

R
u(s, ) = a j G(p,po)pu’(p)dp + RU (R+ 0)G(R, po), with
0
a(R, )’2) = kRK;(k3R)J; (koR) — K RK( (k;R)J; (koR)

= koRK; (k1R)Jg(k2R) + kiRKo(k;R)J1(kzR),

0<po<R, (3.9

where the condition’(R-0)=u’(R+0) has been used.

By means of well-known relations between Bessel func- (3.189
tions[14] the Green'’s functiorG(R, pg) in EqQ. (3.9) can be R
expressed by3(R, pg) =(1/kR)[J1(kopg)/ I (KR)]. Thus the E(R 2 W) = K. (kR f do 03+ (kop) U3
solution of Eq.(2.10 satisfies the nonlinear integral equation (RY50) =Ky(kiR) 0 b philkep) U, 7).
(3.19

R
= 3 = =
u(s, %) afo Glp.9)pu(p)dp+f(s,¥’), O0<s<R, Subject to certain conditions, tripl¢R, 7, a} exist that sat-

isfy the exact nonlinear dispersion relati®17) (see Ref.
[10], Sec. V). Thus the problem stated in Sec. Il has a non-
trivial solution. We note that Eq3.17) is identical with the
linear dispersion relatiog(R, %) =0 [18] if «=0. In this
case f(s,y?) given by Eq.(3.11) is equal touy(s, ¥°) accord-
ing to Eq.(3.15.

It seems useful to compare the foregoing approach with
the “standard” approactsee[19]). According to Ref[19],
Eq.(2.3.19, the “standard” approach starts with a separation
ansatzZwith a z-dependent amplituddéeading to a system of
two equationgcf. Egs.(2.3.19 and (2.3.16 in Ref. [19]]
solved using the first-order perturbation theory where the
nonlinear dielectric function is replaced by a constant linear
one. The result is a certain propagation consjarand the
corresponding modal field distributidf{(p). The nonlinearity
is taken into account by adding a correction tekd [deter-
mined by the unperturbed fiel&F(p)], leaving F(p) un-

changed. The dispersion relation is given BrB+AB
within this approachcf. Eq. (2.3.19 in Ref. [19]]. Obvi-

a according to Eq(3.17) (below) has been suppresged ously the ansatz of the “standard” approach is more general
The functionu(s, y?) is continuous with respect tvand  than ansatz2.5). We have considered a particular polariza-
¥? [16]. It can be approximated by means of the iterationtion case, disregarding stability, and restricted analysis to

procedure lossless media with the core homogeneous irztgection.

(3.10

with, taking advantage of the continuity conditi¢2.11),

_ kaKi(kaR)Jy(ks)
fs7)= koK1 (kgR) I3 (KoR)

The unique solutiom(s, y?) of Eq. (3.10 exists[15] if

(3.12

(3.11)

|a| < AZ,
where

2 1

33 max|f(s)| | max [dplpGip.S)
se[0R

AR, =

(3.13

[in the notation ofA(R, y?) the implicit dependence of? on
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_ On the other ha_nd, we thir_nk that our approaqh is more ON2y k1K (k;R)J1(KoS) L N; (k,R)
rigorous (mathematically. The field obeys the nonlinear in-  U(S,(¥™)%) = kR R T2 TR J1(kzs)
tegral equation(3.10); the exact solution to this equation 2Ka(KiRM (keR) 1(kR)
exists and can be approximated by iteration and solving the R 3 (Ohz

(exac) dispersion relatior(3.17 whose exact solution also Xf dp pi(kap)up(p, (¥™)?) = Ny(ky)
exists and can be approximated for nonlinearitiesubject 0

to the conditions of the theorem presented in the Appendixes. s 3 (On2
It would be intriguing to compare practical results of both X | dp pdi(kap)ug(p, (¥™)7) = Ja(ksS)
methods. °

R
x f dp le(kzp)ug(p,(W))z)}, (4.3
IV. APPROXIMATIONS s
. . . _wherek;=(+9)?~¢; andk,= &~ ().
It is obvious and useful to consider the sequence of dis- Sinces,—j2 /R2< (9)2< g,~2 /R? holds cf. Appendix
persion relations generated by the iteration sequéBdsh  a) J!(k,R) cannot be zero because the zerod/adre outside

(for @, R prescribeql the interval[ ¥4, 75]. The same statement is valid for the
solutions ¥ of Eq. (3.17, so that Green’s functiori3.5)
_ . exists anduy(s), se[0,R], is nonsingular.
9(R.(¥")?) = aF (R, (Y% 1D). (4 & 1(8), € [0,R], is nonsingu

If «=0, u, is equal tof and this is equal taiy(s, y%)
becausdy'?)?=+7 is a solution of the linear dispersion re-
Hereu, is determined from Eq3.14) with y=y""Y andy”  |ation g(R, 12 =0.

from Eq.(3.17) in which u is replaced by, Summing up,

We have showr{20] that solutions(y™)? to Eq. (4.1) (N2 0=s<R
exist and that the sequencg™)? approximates the solutions T(s) = {ul(s,(y ), =S=R
»? of the exact dispersion relatiaqB.17) [|(y")2- 4 —0 as Ki(ki9K'(kR), s>R,

n—oe]. In this meaning, the sequence of dispersion relationgpere uy(s, (¥9)?), given by Eq.(4.9), is an approximate
defined by Eq(4.1) approximates the exact relati¢8.17). solution of the problem stated in Sec. I(i#?)? is a solution
The first approximation is obtained by insertiog(s,v»)  of the approximate dispersion relatiof.2).

into Eq. (3.17). Hence it follows
V. APPLICATIONS

K (kR) (R We introducg the dimensionlgss variables~and parameters
T30 o dp in(kZP) =0. ’ﬁ:kop, 7= koZ, R:koR, 528/80, k]_: \/h‘yz_gl, k2: \“82_.")‘/2,
(g,>"¢,), andy=y/k,. Thus the nonlinearity parameterin
(4.2 Egs. (4.2 and (4.3) is dimensionless and given bw
=aEj/ g, In the following we omit the tildes.
. (N2 , To apply the results of the previous section it is useful to
The solutions(y"”)“ of Eq. (4.2) and the zeroth approxima- eygluate the quantitie given by Eq.(3.13 andA, andB,
tion ug(s, (#?)?) given by Eq.(3.15 must be inserted into defined in Appendix A. According to Appendix B we obtain
Eq. (3.14 leading to the first approximatiom(s, (%)) of  for the first interval y2e Ay, A1=[e,—j2,/R2,e,—j2,/R?]
the field functionu(s, y?) (the first mode

H(R,v,a) = g(R, -«
(Ry,0) =9(R,¥) FoR U

0.228718y - £2)[Jo(RVe, — ¥2) — Jo(RVe, — PIK(RVYP — £9)
V72 = eadimin(j 15, Rvez = YDIKo(RVY = £1) + Ko(RV¥ -~ £1)]

A(¥AR) = : (5.0

A, (R) = 0.981460x

I R

Ki(VRe(e2 - &1) = j5)
[02( e — _i2 [22(e — _i2 [m2. _ _i2 ’

{RVR™(e5— £1) — joa Ko(VR (&2~ £1) — jon) + Ko(NRH (&2~ &1) — jon I}
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min|g(v4,)|
m=1,2

Bl(a, R) =

3co

: (5.9

1 N
— cos i
3 A

5 .o.
Ki(\(e,— e)R2 - 2)0.3R%| -

with

J

ﬁm:sz—ﬁm, m=1,2 (5.4)

and

ki RIK7(kyR) I3 (Min(j14, koR))|
koR[K(kyR) I3 (kR)|

([l = (5.5

72:7?2.

We choose:; =1, 8,=3.5, ande=7x 10" In this case all
sufficient conditions of theorems 1-4 in Rg10] are satis-
fied if 2.568<R<3.10 (cf. Fig. 1). Figure 2 represents the
solutions of the dispersion relatiqd.2) for > e A;. An as-

sociated field pattern is depicted in Fig. 3. The agreement o

u; with the numerical solutiorfcalculated by means of the
NDSolve routine of Mathematig¢ais satisfactory[cf. Fig.
3(b)]. The intensityE3u?(py?) can be compared with experi-
mental results.

The solutionu, (for ap=7%10"% can be continued ana-
lytically for o>« (cf. Fig. 4. If H(R,%?,a0)=0 and ex-
cluding dH/9y(R)|4=¢,=0 We obtain

JH
E(R)
y=~9- H (a=ag+--. (5.6
&—(R)
y a:ao
0.00z | Ar*(R) Bra(R)
\‘B_puls
0.001 N”‘n_\\
/ﬂ——-‘%‘\— Tl -
T T A(R)
- 0.0005 ~—
/ e
/ ~
/ Bi.a(R)
26 2.8 3z =4 R

FIG. 1. Check of the sufficient conditions of theordafi. Ap-
pendix A for a=7x10% If 2.58<R<3.10 holds, thena
<min{A?,By .} is valid.

For R=3.25 anday=7x 10"* the solution of the disper-
sion relationH=0 is 9=1.597. ForR=3.25 anda=10"
the solution isy;=1.605. Evaluation of Eq(5.6) with «
=10 leads toy,=1.606. The field patterns for this case are
shown in Fig. 5. The agreement with the associated numeri-
cal solution is satisfactor{the singularity in the numerical
solutions is due to the NDSolve routine of Mathematica
Hence it seems justified to conclude that the solutgrof
the dispersion relatiofd.2) is a satisfactory approximate so-
lution of the exact dispersion relatidd.1) though the(suf-
ficient) conditions of the theorems 3 and #0] are not sat-
isfied. If we apply the same approach fB=5 and a=
-107%, we obtain the result shown in Fig. 6.

f If a solution of the dispersion relatiof.2) exists in the

vicinity of y=ve; [R—R.=1j%/(e,—¢1)] the dependence
of the cutoff radiudR; on the nonlinearity parametarcan be

investigated in analogy to the linear case. In the limit
—g; Eq. (4.2) can be approximated by

Re
[
0

wherek=+e,—¢4. Figure 7 shows the dependenceRxfon
a

Jo(kR) _

Ja(kr) ,
= ——d ,
3(kR) '

(kR &7

kR

The power flowP down the guid€gin the core and in the
cladding regimg is obtained from an integration of the
component of the time-averaged Poynting ve&oover the
appropriate cross section:

R -

4.3 y=[e:—(juf/R]"

3.5 T

2.5 — ’,,*""/ y=[s; —(jul/R]"

1.6 1.7

FIG. 2. Dependence @’ on y for a=7x 10"*. Dashed curves:
boundaries ofA; solid curves: solutions of the dispersion relation
(4.2 subject toa<min{A?,B, .} (cf. Fig. 1.
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~F 1 —
2 - —""'\
1.5} Vs
/ I "'~~'.-
LE Y
ﬂﬂ-’ ki
o o &
A —Fk
J L pd 3 q 5
=0.5 ’ 2
approximate
-1 1] o.1 \ =T
T . o ﬂi_ O. 0O o.0O3 OO O.0=
-0, 4 H‘\
-0, 8 numerical
-0 ¥
-O. & =]

FIG. 3. (a) Field pattern according to Eq€3.2) and (4.3 (parameterse;=1, £,=3.5,R=3.25,a¢=7x 10"% and numerical solution of
Egs.(2.9) and(2.10. (b) Enlarged fragment of the curve in the vicinity of origin.

P= I:’core"' I:)clv (5-8) & — (1 —ﬁ)Rz (5 15)
with P (1-pR?+2[gdssd(k,s)’ '
R JE—
Peore= 277[ dPPSz(kZP)! (5.9 T . . : r
0 1.6} /,_’—%—/_’_/_/
. R=325
P = ZWL dppS,(kip), (510 | .| N
~
— 1 h ~
S(5) =~ RElE(9H, (). c1y U \
\

By using Eqs(3.2) and(4.3) and asymptotic properties of 1.a5} |
Ki(x) [14] Egs. (5.9 and(5.10 can be evaluated to yield

R
Peore= 2777Pof dPPUi(kzp). (5.12
0
1asf ™ -
Ko(kiR) K, (kR ™
P, = 7_rRz,yF)o(w _ 1), (5.13 ™~
Ki(kR) 1.3} ~
~ o
where Py=EZkq/2wuo. It is convenient to abbreviatgs . . i . . .
=K3(k;R)/Ko(kiRIK,(k;R). Thus the power flow fractions -0.02 -0.01 0 0.01 0.02 0.03
can be written as FIG. 4. Dependence of on « according to the dispersion rela-
p 28(Rdss(k-s tion (4.2) for R=3.25 andR=5. Arrows indicate analytic continua-
COE — Blgdssti(kes) , (5.14  tion (cf. details in the tejt Dashing indicates nonphysical
P 2 R
(1-BR? +2p[Gdssd(k,s) branches.
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2 [} ) ,f”FEE“"H ]
W \\
- / ™,
15-‘-; _—— Eppeouimals 5
7y e 0
1)
™~ 1 “ x| 4 5 E
-1 .‘nun:lr:d
- u
-2 (a) 2 1
1 3 4 5 E
1.9
1.8
L
(b}
1.6
1S

FIG. 5. (a) Field pattern according to Eq€3.2) and(4.3) (parameterse;=1, £,=3.5,R=3.25,a=10"1) and numerical solution of Egs.
(2.9 and(2.10. (b) Enlarged fragment of the curve in the vicinity of maximum.

Figure 8 shows the fractioR..e/ P=1-P,/P as a func- amed? [ (R R(1-p)
tion of a=aEj/e,. Since an analytic continuation according P= A Y f dssif(kys) + T ) (5.1
0 0

to Eq. (5.6) for «=-0.06 is possible it seems that a cutoff
limit of « for defocusing material exists, where the power According to the dispersion relatigq#.2) the propagation
flow in the core switches to zer@ve could not find associ- constanty is an implicit function of the radiu® and of the
ated experimental results in the literatur@he dispersion nonlinearity parametex. Thus, solving Eq(4.2) for fixed a,

curves related to Fig. 8 are shown in Fig. 9. Making use ofone obtains the propagation constanas a function of the
Egs. (5.12 and (5.13, the total power flow carried by the radiusR: y=¥(R; a=cons}. By means of Eq(5.14 we then

guided wave in first approximation is given by find the corresponding values of the power fl&y,/P and
4 u
2 J—
L[ " . A i o i \_--h_-.___— - R
% z 5 4 é B FIG. 6. Field pattern according
\ f,/ . to Egs. (3.2 and (4.3 (param-
-2 . - |I etersl: e1=1, 82=3_.5, R:5,_a=
] Y -10) and numerical solution of
el e numerical Egs.(2.9) and(2.10. (b) Enlarged
e : fragment of the curve in the vicin-
Mg ity of origin.
O 04— 0.06 0.80
-o.z} afproximate ——=
=0.4 (b
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5T v L e
R, T " E=3
i T 1.55} e
- o 1.5 '
a 1.45} ) "
2.5 |/ B =15
1.4} e I
z |
)
1.35F |
a5
Y I
15—
1.3
o > o
0 0.05 0.1  0.15 0.2 0.25 0.3 D.02 _0.02 o 0.02

FIG. 9. Dependence of on « for R=3 and 2.5(parameters:

FIG. 7. Dependence oR; on « (parameterse;=1, £,=3.9.  , -1 . =35 Dashing indicates nonphysical branches.

Dashing indicates nonphysical branch.

its dependence oR. This dependence is shown in Fig. 10. » >0 (5.18
Finally, we evaluate the total power flow according to dy
Egs.(5.16. Apart from a constantE, is assumed to be con- ig gaisfied for the selected branches in Fig. 11.
stan) the dependence @? on y is given by the integral We would like to make the following comment concern-
ing the computational results: we solved the nonlinear Bessel
R(1-P) equation numerically without approximation using the

R
I= YL dsst(k;s) + (5.17  NDSolve Mathematica routine. The singularity a0 is

generated by this routine and not dueate 0.

with ,B:Ki(klR)/ Ko(kiR)K,(k;R) subject to the dispersion
relation(4.2). We choosex=0, +0.01. The associated depen-
dence ofR on vy is shown in Fig. 11. The goal of this article has been to propose an approach to
The total power flowP(y) for selected branches of the treat the propagation of electromagnefli&) waves in a cy-
dispersion relatioricf. Fig. 11) has been plotted in Fig. 12, lindrical Kerr-nonlinear dielectric waveguide based on the
where, in evaluating, Egs.(3.15 and (4.3 have been used Green's function method. We have obtained an approximate
for a=0 and «=+0.01, respectively. Obviously the neces- analytical solution of the nonlinear Bessel equati@il0
sary condition for stabilityf21]

VI. CONCLUSION

Pcore/ P 1
-0.06  -0.04 -0.02 0.02 0.04 0.54 9
a=af(Ey) /e 3
0.5 0.92
R=3 - - - -
2.6 2.8 3.2 3.4
— 0.88
R=25
0.86
Peore/ P
FIG. 8. Power flow fraction in the core with respect &0
:aEél go (parameterse =1, £,=3.5). Arrows indicate switching of FIG. 10. Power flowP,,/ P with respect toR (parametersz,
the power flow and dashing indicates nonphysical branches. =1, &,=3.5); (1) «=0.05,(2) @=0.01, and(3) «=0.001.

016614-8



PROPAGATION OF TE WAVES IN CYLINDRICAL... PHYSICAL REVIEW E 71, 016614(2009

tisches Forschungsinstitut Oberwolfach, Germany.
APPENDIX A

In Ref.[10] we proved theorem 3. As a consequence of
the different normalizatiofjcompare Egs(3.2) and(2.21) in
Ref.[10]] we rewrite theorem 3 in the following form.

Theorem If &4, &5, and « satisfy the conditiong,> e

>0, and 0<|a|<ap, ande,—j2, /R?>¢, (for a certainm

c =1), where
g = mMin{AZ(R),B(a,R)}, (A1)
4 A;= min AR, ), (A2)
yzeAl
3 minjg(¥m)|
B, = — (A3)

0.3R% max{K,(k;Rr3(y2}’
)/ZEAJ_

3\6 —

1.1 1.2 1.3 1.4 1.5 1.6 1.7 arcco$ —||f[[V|IN]|
3 1 2 2T
FIG. 11. Solutiongy,R} of the dispersion relatiot¥.2), in par- r-=- 3||N|| co 3 ? '
ticular for 1.1< y<1.44(cf. Fig. 12: (1) =0, solid curve;(2) a

=-0.01, dashed curvé3) «=0.01, dotted curve. (A4)
and an approximative solution of the dispersion relation k;K1(kiR)J1(koS)

i : . . fll= max|f(s)j]= max ——————, A5
(3.19. As indicated in Sec. V the approach is applicable to 1] SE[O’R]| (s) sc[0R] koK1 (KiR) I (KoR) (AS)

yield numerical results for field patterns, dispersion curves,
cutoff radii, and power flow. R

It seems that the approach can be applied to more general N[ = max f lapG(p,9)|, (A6)
nonlinearitiede.g., higher order, saturating, photorefractive se[0R] Jo
Azimuthal polarization treated in this paper has experimental
relevancg 22]. We do not see how the approach can be used _ iZ iz,
to investigate more general polarization cases, because, in A= 82_@““@ '
place of Egs.(2.7) and (2.10, in general we obtain two
Coup|ed nonlinear equations_ [] Oi andjli denote thdeSItlve zeros of Bessel fUnCtions),

J;] then at least one? e A, exists so that the problem de-
ACKNOWLEDGMENT scribed at the end of Sec. Il has a nontrivial solution.

We thank Professor Valery S. Serov, University of Oulu, APPENDIX B: DERIVATION OF EQS. (5.1)(5.3)

Finland, for insightful comments during a stay at Mathema-
With respect to the definitions &, A;, andB; [cf. Egs.

(3.13, (A2), and (A3)] it is useful to estimate the quantity

(A7)

| I

i TG:ma)%e[o,R]f5|PG(P,5)|d5 first.
| Introducing t=kyp, u=kys, U=k,R and h(u,U)=J;(u)
sl X[N1(U)/31(U)]=N(u) we obtain
Z P R R
| ¢ j |pG|dp:—2|\/|(u,U), (B1)
- _ o 2k
E A with  M(u,U)=[h(u,U)|f5dt §3y(t)] +[Iy(w)f7dt i, U)|.
| i , For simplicity we consider the first interval, [cf. Eq.(A7)].
5t R Thus, joi<=U<j,,,0<u<j,; are valid [which implies
l e J;(u)=0]. As shown in Fig. 13M(u,U) can be estimated
P e b from above according tM(u,U) <M(jg1,jo1), SO that
—a = a - » .IA I8 A .!'J a A . = .s_‘,l,._.!_:.n R - jO]_
b - e rrggé]f [pG(p,s)|ds=< %|h(j017j01)|f dttdy(t).
se|0,
FIG. 12. Power flow integrdl defined by Eq(5.17 for particu- 0 2 0
lar solutions{y,R} of the dispersion relatiofé.2) (cf. Fig. 11). By usingh(x,x)=2/mxJ;(x) [14] we finally obtain

016614-9
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1.75fM (@, 1) U= jo =2.404
1.5
1.25
1

0.75 To32 yo3s U=3.08 =},
0.s
0.25

u

1 2 3

(a)
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FIG. 13. Plots of the functioM(u,U) (cf. By): (a) for 0<U=<j; and(b) for differentu.

[lditd,(t)  2.832
jodilioks K3

Combining Egs(3.11), (3.13, and(B2) and usingK;=
-3(Ko+Ky) and Ji:%(?osz) one obtains Eq(5.1), since
max.porJ1(K29) =Ji(minfj1,,kR}) holds [j1;~1.841 de-
notes the first zero a¥;(x)].

A plot of A(¥,R) (e.g., fore;=1, £,=3.5, 2.4<R<5,
and y? € A;) shows that the minimum oA with respect to
Y e A is given byA(e,—j2,/R?,R). Evaluation yields Eq.
(5.2.

To derive Eq.(5.3) we combine Eqs(A4)—(A6) to obtain

3 "6 rr—
arcco<%||f||\"|a|TG)

R
max f |pG(p,s)|ds =< (B2)
0

se[0R]

2 2
=-—=—c0 -—1, (B3
V3|a|Tg 3 3

or, taking into account E¢3.13),

= ||f||a(—”m), (B4)
A
with
3 2
Sx) = cos( areeosc —”) . (B5)
X 3 3

Function&(x) is monotonically increasind$,(k;R) in Eq.
(A3) is a monotonically decreasing function afffl a mono-
tonically increasing function with respect t@ € A. Thus
B,(a,R) defined by Eq(A3) can be evaluated according to
Eq. (5.3.
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